Thinking of joining a study?

Register your interest

NCT05136612 | Completed | Cerebral Palsy


The Effects Of Upper Extremity Robotic Rehabilitation On Upper Extremity Functions And Gait Parameters
Sponsor:

Gazi University

Information provided by (Responsible Party):

Mustafa Burak

Brief Summary:

Cerebral Palsy is defined as the cause of movement and posture disorders and activity limitation that develops in the fetal or infant brain that has not yet completed its development. When the literature is examined, although upper extremity and lower extremity involvements are common in individuals with hemiparetic CP, treatment programs are mostly aimed at the lower extremities. However, studies report that the upper extremity is more severely affected than the lower extremities in individuals with hemiparetic CP and that upper extremity functions have an effect on walking. Although different treatment methods have positive effects, their superiority over each other cannot be clearly reported. In this case, new intervention strategies based on sound methodological and scientific foundations are needed. At this point, virtual reality applications and robotic rehabilitation programs have started to play an important role in CP rehabilitation along with current developments in technology-assisted rehabilitation. Robotic devices provide visual, auditory and sensory inputs, making the process fun, while making the individual active in the treatment. It also enables the child to achieve goal-directed movements in children with motor disabilities. Various gait problems are seen in individuals with CP. Therefore, although lower extremity movements during walking have been well analyzed in the literature, upper extremity functions and especially arm movements during walking have received less attention. Although human gait is perceived as a situation that concerns only the lower extremities, it actually includes the coordinated movements of all four extremities. Individuals with hemiplegic CP usually have a markedly deviated arm position and reduced arm movement. This situation also affects the gait and balance of individuals with hemiparetic CP. Individuals change their upper extremity kinematics while increasing their walking speed to optimize gait and increase balance. In the light of this information, practices aimed at improving upper extremity movement and function should be included in the rehabilitation program of patients with hemiparetic CP, considering a holistic approach. Considering all these, we thought that if we increase the functions of the upper extremities, we can improve walking, and we planned this study.

Condition or disease

Cerebral Palsy

Intervention/treatment

conventional physiothrapy

robotic rehabilitation

Phase

Not Applicable

Detailed Description:

Cerebral Palsy is defined as the cause of movement and posture disorders and activity limitation that develops in the fetal or infant brain that has not yet completed its development. Although CP is the most common physical disorder in childhood, its incidence varies between 1.7-2 people per 1000 live births in developed countries. Although the impairments seen in CP are not progressive, as individuals with CP get older, their current motor function declines dramatically and their independence decreases or disappears as a result. These neurodevelopmental disorders are classified as hemiplegic, diplegic and quadriplegic according to the anatomically affected body parts. Along with motor damage, epilepsy, cognitive disorders, behavioral disorders, visual-hearing losses and sensory disorders can be seen in children with CP. In addition, upper extremity involvement is quite common in individuals with CP. Although upper extremity and lower extremity involvement are common in individuals with hemiparetic CP, treatment programs are mostly aimed at the lower extremities. However, studies report that the upper extremity is more severely affected than the lower extremities in individuals with hemiparetic CP and that upper extremity functions have an effect on walking . Although human gait is perceived as a situation that concerns only the lower extremities, it actually includes the coordinated movements of all four extremities. In a study, it was reported that it is beneficial to encourage arm movements during gait rehabilitation. It has been reported that although individuals with hemiparetic CP gain walking skills, they lag behind their peers in terms of upper extremity functions. This makes upper extremity rehabilitation important. There are various treatment modalities aimed at eliminating upper extremity dysfunction and reducing activity limitations. These; neurodevelopmental treatment approaches, orthoses, forced restrictive movement therapy, virtual reality and robotic rehabilitation applications. Although the different treatment methods have positive effects, their superiority to each other cannot be reported definitively. In this case, new intervention strategies based on sound methodological and scientific foundations are needed. With the development of technology, the interest in robotic rehabilitation has also increased. The first study examining upper extremity robotic rehabilitation in CP was conducted in 2008. In this study, it was reported that robotic rehabilitation has positive effects on upper extremity motor functions and the use of upper extremities in daily living activities. In a thesis study conducted in our country, conventional physiotherapy and robotic rehabilitation were compared and it was concluded that hand skills improved in both groups, but the increase in the group receiving robotic rehabilitation was statistically significant. In the literature review, it was seen that studies on upper extremity robotic rehabilitation were few and their effects on gait parameters were not examined. In this context, it is thought that in our study, the effects of upper extremity robotic rehabilitation on upper extremity functions and gait parameters will be examined and it will contribute to the literature. Method: This study was conducted to examine the effects of upper extremity robotic rehabilitation on upper extremity functions and gait parameters in individuals with hemiparetic CP; It is a prospective, randomized controlled, single-blind study. The study will be carried out in a single-blind manner, and the evaluator will not know which group the individual is in. 30 individuals with spastic hemiparetic CP, aged between 6-18 years, will be included in our study. The parents of each individual will be informed about the study and will read and sign the consent form stating that they voluntarily participated in the study.

Study Type : Interventional
Estimated Enrollment : 30 participants
Masking: Single
Primary Purpose: Treatment
Official Title: Investigation Of The Effects Of Upper Extremity Robotic Rehabilitation On Upper Extremity Functions And Gait Parameters in Individuals With Cerebral Palsy
Actual Study Start Date : January 1, 2022
Estimated Primary Completion Date : June 1, 2022
Estimated Study Completion Date : January 1, 2023
Arm Intervention/treatment

Experimental: control grup

conventional physiotherapy

Other: conventional physiothrapy

Experimental: intervention group

Armeo spring robotic rehabilitation

Other: conventional physiothrapy

Ages Eligible for Study: 6 Years to 18 Years
Sexes Eligible for Study: All
Accepts Healthy Volunteers: No
Criteria
Inclusion Criteria
  • The clinical type is spastic hemiparetic CP.
  • Upper extremity spasticity value between 0 and 3 according to Modified Ashworth.
  • To have the cognitive level to understand simple instructions.
  • It is largely the absence of auditory and visual loss.
Exclusion Criteria
  • not volunteering to participate in the study.

The Effects Of Upper Extremity Robotic Rehabilitation On Upper Extremity Functions And Gait Parameters

Location Details


Please Choose a site



The Effects Of Upper Extremity Robotic Rehabilitation On Upper Extremity Functions And Gait Parameters

How to Participate

Want to participate in this study, select a site at your convenience, send yourself email to get contact details and prescreening steps.

Locations


Not yet recruiting

Turkey,

Gazi University

Ankara, Turkey,

Loading...