Thinking of joining a study?

Register your interest

NCT05128955 | Recruiting | High-grade Splenic Injuries


Embolization of the Splenic Artery After Trauma
Sponsor:

Andrew J. Gunn

Information provided by (Responsible Party):

Andrew J. Gunn

Brief Summary:

Our aim is to conduct a multi-center, Bayesian, randomized clinical trial to evaluate the primary technical success of coils and vascular plugs for proximal splenic artery embolization in the setting of high-grade splenic trauma. The investigator has previously demonstrated the feasibility of such a study in a single center pilot trial.

Condition or disease

High-grade Splenic Injuries

Intervention/treatment

Splenic artery embolization with vascular embolic coils or plugs

Phase

Not Applicable

Detailed Description:

Splenic preservation rates are improved for participants with high-grade splenic injuries (defined as Grade III-V injuries by the American Association for the Surgery of Trauma (AAST) guidelines) when non-operative management is supplemented by image-guided, trans-catheter splenic artery embolization (SAE). SAE is currently the standard of care for hemodynamically stable participants with high-grade splenic injuries. In proximal SAE (pSAE), the mid-splenic artery is embolized between the origins of the dorsal pancreatic artery and pancreatica magna artery with either endovascular plugs (VPs) or endovascular coils (EC). This reduces the intra-splenic arterial pressure which allows the parenchyma time to heal. Splenic perfusion is maintained via a collateral pathway consisting of flow from the splenic artery proximal to the site of embolization through the smaller dorsal pancreatic artery to the transverse pancreatic artery to the pancreatica magna artery which then delivers a slower, smaller amount of blood to the splenic artery distal to the site of embolization. Additionally, collateral supply from the short gastric and gastroepiploic arteries helps to protect the spleen from infarction and/or abscess formation. pSAE is most often accomplished using either VPs or ECs as the embolic agent, both of which are FDA-approved and clinically-available. ECs have a long history of efficacy and safety for embolization and are thus familiar embolic agents to most endovascular specialists. Further, coils large enough to embolize the mid-splenic artery can be deployed through a standard micro-catheter, which means they can be used in even the most tortuous splenic arteries. However, multiple coils may need to be deployed in the same patient to achieve hemostasis in the mid-splenic artery that may increase their overall cost, iodinated contrast use, procedural time, and the radiation exposure to the participant and medical staff. Additionally, given the high-flow nature of the splenic artery, even an appropriately sized coil may migrate distally. A typical pSAE using coils will involve the deployment of one helical coil followed by multiple packing coils until hemostasis is achieved. VPs attempt to overcome the limitations of coils. For example, the deployment of a single VP can typically provide hemostasis in the mid-splenic artery which theoretically reduces procedural time, contrast load, and radiation exposure. Despite this, VPs are usually more expensive than coils on a per unit basis and are usually less familiar devices to endovascular specialists. Another drawback of VPs is that they cannot be deployed through a standard micro-catheter but rather require the advancement of a larger, stiffer 0.035 inch system into the mid-splenic artery. This may limit their use in very tortuous splenic arteries. Currently, the selection of embolic agent for pSAE is primarily based on operator experience and preference. The embolic efficacy, technical success, and cost of using coils compared to VPs has been evaluated in other diseases; yet, to the best of our knowledge, these embolic agents have never been compared for their use in pSAE, much less in a randomized, prospective fashion.}}

Study Type : Interventional
Estimated Enrollment : 250 participants
Masking : None (Open Label)
Primary Purpose : Treatment
Official Title : Embolization of the Splenic Artery After Trauma (ELSA-2)
Actual Study Start Date : May 10, 2022
Estimated Primary Completion Date : April 2024
Estimated Study Completion Date : April 2025
Arm Intervention/treatment

Active Comparator: Active Comparator: Splenic artery embolization with vascular embolic coils

Device: Splenic artery embolization with vascular embolic coils

Device: Splenic artery embolization with vascular embolic coils or plugs

Active Comparator: Active Comparator: Splenic artery embolization with vascular embolic plugs

Active Comparator: Splenic artery embolization with vascular embolic plugs

Device: Splenic artery embolization with vascular embolic coils or plugs

Ages Eligible for Study: 15 Years
Sexes Eligible for Study: All
Accepts Healthy Volunteers: No
Criteria
Inclusion Criteria
  • ≥15 years of age
  • Trauma resulting in grade III or higher splenic injury on contrast-enhanced CT
  • Splenic injury to be treated by non-operative management as decided by attending trauma surgeon and interventional radiologist
  • The attending interventional radiologist determines that the patient will undergo proximal splenic artery embolization with the specific method to be decided by randomization.
Exclusion Criteria
  • Inability to obtain informed consent
  • ≤ 50kg
  • Uncorrectable coagulopathy
  • Patient is immunocompromised
  • Pregnant
  • Breast-feeding
  • Non-English speakers
  • Prisoners

Embolization of the Splenic Artery After Trauma

Location Details


Please Choose a site



Embolization of the Splenic Artery After Trauma

How to Participate

Want to participate in this study, select a site at your convenience, send yourself email to get contact details and prescreening steps.

Locations


Recruiting

United States, Alabama

University of Alabama at Birmingham

Birmingham, alabama, United States, 35294

Not yet recruiting

United States, North Carolina

Wake Forest Baptist Medical Center

Winston-Salem, North Carolina, United States, 27157

Not yet recruiting

United States, Ohio

Ohio State University Medical Center

Columbus, Ohio, United States, 43210

Not yet recruiting

United States, South Carolina

Prisma Health

Greenville, South Carolina, United States, 29615

Not yet recruiting

United States, Texas

The University of Texas Health Science Center at Houston McGovern Medical School

Houston, Texas, United States, 77030

Loading...